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Nonlinear distortion of the Kelvin ship-wave pattern 

By N. HOGBEN 
Ship Division, National Physical Laboratory 

(Received 18 January 1972 and in revised form 19 July 1972) 

Linear wave theory is extensively used in research on the design of ship hull 
forms. Difficulty is being encountered, however, because of substantial differences 
between the calculated and measured phase geometry of the wave patterns 
generated. It seems likely that these differences may be at least partly due to 
nonlinear effects on phase velocity, and a nonlinear analysis of the Kelvin 
pattern has been undertaken as a basis for estimating the possible magnitude of 
such effects. It is noted that the Kelvin pattern due to a source in a finite tank 
contains a set of discrete free wave modes. An analysis of the nonlinear inter- 
actions in the general case of a steady multidirectional pattern of discrete cosine 
wave modes is undertaken, special attention being paid to the distortion of the 
phase anatomy, and the resulting theory is applied to the case of the Kelvin 
pattern in a tank. Sample computations using this analysis are discussed. 

1. Introduction 
The wave pattern generated by a travelling source as defined by Kelvin (1887) 

using linear theory has for a long time played a key role in ship-wave research. 
The waves generated by a ship can in fact be approximately represented as the 
sum of a series of elementary Kelvin source patterns and this principle is exten- 
sively used for studying the wave-making properties, especially for estimating 
the wave-making resistance of ships. Comparison of such theoretical estimates 
with experiment has shown that though there is generally fair qualitative 
agreement there is a consistent trend for the phases of the measured waves to 
lie forward of those predicted on the basis of linear Kelvin source arrays. These 
phase differences are causing difficulty in hull design investigations by the 
author using analysis of measured wave patterns behind ship models to deduce 
the locations of the principle sources of wave making. 

In  1909 Hovgaard had already noted the tendency for bow wave crests to lie 
outside the theoretically predicted crest lines to an extent which varied with 
speed. Since that time, further evidence of this trend has been cited, for example, 
by Gadd (1969, 1971), Hogben (1957, 1971a), Inui (1963) and Newman (1970). 
Both Hovgaard and Gadd have suggested that this may be at  least partly 
explained by outward displacement of the stream flow near the bow, following 
the shape of the waterlines, which is neglected in the linear theory; the latter 
(Gadd 1971) has in fact developed an approximate method of allowing for this 
effect. Support for this view may also be found in Shearer (1951) and Everest & 
Hogben (1970); Shearer showed that the phase discrepancy is negligible for fine 
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formed mathematical models but Everest & Hogben, using variants of similar 
model form, showed that there is a discrepancy which increases as the bow 
waterline angle increases. This idea, however, does not satisfactorily account 
for the substantial speed dependence noted by Hovgaard (1909) and Hogben 
(1971 u) and some further explanation is needed. 

Gadd (1969) suggested that the effect may also be partly due to nonlinear 
influences on the wave propagation velocity and this idea was elaborated in 
the discussion by Lighthill, who proposed a simple empirical formula for assessing 
the magnitude of these influences. The author has examined this formula but 
has been unable to apply it because it is necessary to evaluate effective local 
wavenumbers, which he could not measure in practical experimental situations. 
He has also studied a number of other papers on nonlinear wave theory without 
finding any satisfactory basis for estimating the magnitude of these nonlinear 
phase shifts. He has therefore attempted to provide such a basis by examining 
second- and third-order interactions in the idealized case of the theoretical 
wave pattern due to a single Kelvin source in a tank of finite width. Such a 
single source can roughly represent a ship only at  very high speeds but an 
approximate basis for estimating the phase shifts due to wave mode interactions 
has emerged which may reasonably be expected to indicate their order of 
magnitude at more realistic speeds also. The present paper according t o  its title 
is concerned with the investigation of the Kelvin pattern which is thought to 
be of some interest in its own right. Ship applications, though touched on, are 
not discussed in much detail. 

The paper is in three main parts. The first is a discussion of the linear theory 
for waves due to a travelling source, special attention being paid to the phase 
anatomy both in open water and in a tank; in the latter case it is noted that a 
steady pattern of discrete free wave modes is formed downstream. The second 
considers how the free-surface condition for a steady multidirectional pattern 
of discrete wave modes may be satisfied to second order by an extension of 
Rayleigh’s (1876) method for deriving the Stokes (1849) expansions for a single 
unidirectional wave train of permanent type. Third-order terms necessary for 
determining the second-order changes in wavenumber are included as in the 
Rayleigh analysis and are found to be rather numerous in the multidirectional 
case. The third part examines the application of this analysis to the case of a 
Kelvin wave source in a tank and discusses the bearing of the results on the 
practical problem of interpreting measured wave patterns as an aid to ship hull 
design. 

2. Linearized theory for waves due to a travelling source 
This section is concerned with linear analysis of waves due to a travelling 

source both in open water and in a tank, special attention being paid to the 
phase geometry. The theory for open water is already well documented but it 
will be briefly reviewed as an introduction to the physical concepts involved and 
a limiting case to be recovered for a tank of infinite width, 
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2.1. Open water 

The name of Kelvin is coupled with the pattern due to a travelling source in 
open water because of the classic papers he wrote on the subject (Kelvin 1887, 
1904). Since that time many other papers have been written on this topic 
including, notably, contributions by Havelock (1908, 1934) and Ursell (1960). 
Havelock (1934) has presented a simple physical interpretation according to 
which the pattern of free waves downstream is represented approximately as 
the sum of an infinite number of elementary sinusoidal wave trains propagating 
in all possible directions, each having an appropriate infinitesimal amplitude 
and a wavenumber satisfying the condition of steadiness with respect to the 
travelling source. On this basis he showed how the now familiar ‘Kelvin patterns ’ 
of crest envelopes can be mapped by a simple graphical process. 

A precise mathematical description of the complete pattern of surface eleva- 
tion &, given, for example, by Lunde (1951)) includes a so-called transient 
disturbance Ct in the neighbourhood of the source as well as the free wave con- 
tribution cf extending over the whole downstream wave field and may be 
written for a source of strength m in deep water thus: 

cs  = Q + Cf , 
where 

(the infinite integral being interpreted as a principal value) and 

Here k = g/c2, 0 may be interpreted as the angle between the direction of ele- 
mentary wave propagation and the direction of source motion, a = ycos8, 
/3 = ysin8 and, in the expression for Q, y = ksec28 and x and y are horizontal 
co-ordinates with origin above the source, which is travelling at  depth z, below 
the surface at speed c in the negative x direction. The double-integral expression 
for Ct can be evaluated numerically but care is necessary to exclude the neighbour- 
hood of the poles at  y = Ic sec2 8, which give rise to the free wave terms defined 
by the single-integral expression for &. 

For the present investigation equations for mapping the crest envelopes will 
also be useful because they can effectively display the phase anatomy of the 
patterns. The term ‘ crest envelope’ here denotes the construction described 
by Havelock (1934) in which the Kelvin pattern is generated by the crest lines 
of the component wave modes. An alternative picture of the pattern may be 
derived by tracing the lines of stationary phase as described, for example, by 
Lamb (1932). These show the effective phase due to the combination of the 
modes, and the resulting wave ridges are similar in shape to the crest envelopes 
but offset to the convex side of them. In particular, as was noted by Lamb, the 
stationary-phase argument leads to a phase difference of &r between the trans- 
verse and diverging waves at the cusp, which does not occur in the case of the 
crest envelopes. In the present work crest envelopes are preferred because the 
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FIGURE 1. Diagram illustrating derivation of crest envelope. 

author's practical concern is with the phases of the individual wave modes as 
determined by analysis of measured wave patterns and, in this context, stationary- 
phase lines are irrelevant. Another advantage is that with the aid of figure 1 
exactly comparable results are easily derived for both the open-water and finite- 
tank-width cases whereas it is difficult to see how stationary-phase lines should 
be determined in the latter case. 

The open-water crest-envelope formulae may be derived from the geometry 
of figure 1 as follows. The figure invokes Havelock's (1934) interpretation of 
the free wave pattern and shows the crest lines of two adjacent wave modes in 
the first cycle of the pattern whose intersection defines a point on the corres- 
ponding envelope. From inspection of this diagram it may be found that 

r = h,sec(6'+$), 

A, = 27x2 C O S ~  B/g, where 

and hence 

which leads to tan $ = tan 6'/( 1 + 2 tan2 6'). 

It may be readily checked by writing d(tan$)/dB = 0 that the maximum 
$ = tan-l(1/2,/2) occurs when 6' = tan-1 (1/,/2), thus confirming well-known 
properties of the Kelvin pattern, as described, for example, by Lamb (1932). 

2.2. Finite-width tank 

The waves due to a travelling source in a finite-width tank can be expressed in 
very similar terms to  those for the open-water case except that the free wave 
patterns can contain only those discrete modes which satisfy the boundary 
conditions at  the walls. The finite-channel situation has been investigated by 
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Srettensky (1936),  Newman & Poole (1962) and Eggers (1962). Eggers has shown 
in various papers (Eggers 1962, 1963) on the analysis of waves generated by ship 
models that in a finite channel the wavenumbers yn of the admissible modes are 
defined by the positive real roots of 

yz = ky,tanhy,h+ ( 2 ~ n / b ) ~ ,  

where k = g/c2, h = depth of channel and b = breadth of channel. 
Everest & Hogben (1969) have subsequently used the method of images to 

derive expressions defining the free wave pattern due to a source in a tank. 
These are closely analogous to the corresponding formulae for open water but 
since only the discrete modes prescribed by Eggers (1962) are admitted, sums 
replace integrals; thus, in deep water (h+co) 

sin ax cos {p(y + nb)}  y dy 
y - ksec2 0 

sec OdOIo e-yzm 
4 m  +O0 

(the infinite integral being interpreted as a principal value) and 

where yn = k sec2 0, a, = yn cos 0, and p ,  = 2 m / b  = yn sin 0,, so that 

7; = c~$+p: = ky,+ ( 2 7 r ~ l b ) ~ .  

Noting now that 2nnlb = k sin 0, sec2 0, leads to d0 = 27r C O S ~  0,dn/bk(2 - cos2 8,) 
it may be seen that the corresponding open-water result is recovered when 
b-tco. 

The associated formulae for mapping the crest envelopes may be derived 
from the diagram, figure 1, used for the open-water case but noting again that 
only the admissible discrete wave modes as defined above are to be included. 
Thus in the figure it may be seen that, writing 0 as 0, and 0 + 80 as On+,, 

where A& = (2nc2/g) cos2e,, 

so 
which leads to 

cos20, sec (0, + $) = cos2 0,+, sec (On+, + $), 

(3092 0, cos On+l - cos2 On+l cos 0, 
tan$ = 

cos2 0, sin 0,+, - cos2 0,+, sin 0, ' 

and an explicit equation for 0, may be written as 

2 
( 1  + [l  + ( 16rr2/k2b2) n2]) 

0, = cos-1 

Having seen that the linearized free wave pattern due to a source in a tank 
can be represented as the sum of a multidirectional series of discrete wave modes, 
we now examine the influence of second-order interactions between the modes of 
such a pattern. 
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3. Nonlinear interactions in steady multidirectional waves 
For some years, oceanographers have become increasingly aware of the signi- 

ficant effect of nonlinear wave interactions on the process of wave generation 
by wind, and papers on this topic include important contributions by Longuet- 
Higgins (19654, Hasselmann (1961), Phillips (1960) and Barnett (1968). Oceano- 
graphic attention, however, has centred on third-order interactions which lead 
to effects which grow with time and are thus essentially unsteady phenomena. 
Some nonlinear analysis of the ship-wave problem has also been undertaken, 
for example, by Newman (1970), Howe (1967, 1968), Sisov (1961), Eggers (1966) 
and Gadd (1969). Newman (1970) examined the third-order solution for the 
Kelvin pattern and was led to the unexpected result that to this order there is 
some unsteadiness due to instability in the region of the diverging wave cusps. 
Howe examined nonlinear effects on the phase using the concept of slowly 
varying amplitude and direction bnt considered an artificial case involving only 
one wave train. The equations derived by Sisov (1961) define the nonlinear 
forces and moments but not the pattern. Eggers and Gadd allowed for second- 
order free-surface effects by introducing supplementary terms to neutralize 
surface pressure anomalies but phase distortions of the waves are not included 
in their analysis. In  a discussion of Gadd’s (1969) paper, Lighthill emphasized 
the importance of the phase shifts with which the present paper is particularly 
concerned and suggested an approximate interpretation for analysing them. 
However, as was mentioned in the introduction, the author was unable to apply 
this to actual experimental situations or to find any theory, other than that 
which is now proposed, which offers the possibility for a numerical evaluation of 
nonlinear phase distortion in a ship-like-wave pattern. 

In  this section nonlinear interactions in the general case of a multidirectional 
pattern of discrete cosine wave modes which is steady with respect to some 
travelling origin are considered. The analysis described extends Rayleigh’s 
(1876) method for deriving the Stokes (1849) expansion for a simple unidirec- 
tional wave of permanent type to derive analogous results which may be applied 
to a steady multidirectional pattern. 

The argument begins by defining a composite potential function in terms 
of the amplitudes and wavenumbers of a set of primary wave trains, all complying 
with the steadiness criterion, and a corresponding number of secondary trains 
due to the interactions. Then by satisfying the exact free-surface boundary 
conditions to second order the amplitudes of the secondary waves may be 
determined. Also, as in the Rayleigh analysis a second-order component of the 
wavenumber is determined by including certain third-order terms when applying 
the surface boundary conditions to the primary waves. This second-order con- 
tribution to the wavenumber has the effect of modifying the relation between the 
wavenumbers and directions of the primary waves corresponding to a given 
pattern speed. This is a crucial feature of the present analysis since it entirely 
determines the phase distortion of the Kelvin wave pattern due to the non- 
linear interactions. 
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3.1.  Outline of the analysis 

The argument is modelled on Lamb’s (1932)  account of Rayleigh’s (1876)  analysis, 
but with some difference in notation. In  this work the space co-ordinates 
are x longitudinally, y transversely and x vertically (positive downwards) with 
origin in the still water surface; 8 denotes the angle between the direction of 
wave propagation and the x axis and c is the x component of phase velocity. 

Consider the potential function 

and the corresponding surface elevation 
N N N  

n = l  r= l  s = l  
C + G  = C en+ C C (crs++Crs-)> ( 3 . 2 )  

where $, = can cos 8, exp [ - (a, sec 8,) 21 sin R,, 

co = mean level, 
$rs* = cars* cos or,*exp { - [(a, k a s )  sec8rs+] x }  sin (Rr i Rs), 

en = b, cos R,, 
Cys* = brs* cos (Rr i Rs), R, = a, (X + y tan 6%). 

If &+ and are to satisfy the Laplace continuity conditions, 8,+ and ers- 
a, tan 8, k as tan 8, 

k as 

must be given by 
Or,* = tan-l 

where a, and b,  are primary wave amplitudes and ars& and brs& are secondary 
amplitudes to be determined. 

In the analysis it is assumed that 

anan and a n b , =  O(6)  as 6+0 

and that cx,ars* and a,b,+ are of O(S2). The free-surface pressure condition is 

( (g)2+ (g)2) 2=g -2gc = 0 

and the kinematic surface condition is 

(3 .3 )  

(3 .4 )  

It may be shown (see Hogben 1971 b,  with some modification, noted below) 

(3 .5 )  

that the pressure condition leads to 

2a, a, cos 8, - 2gb,/c2 + G, = 0, 

where G, denotes the third-order terms which arise when the expressions (3 .1 )  
and (3 .2 )  for $ and c are substituted in the surface pressure equation, 

2(a, +_ a,) ar,* cos Or,* - 2gbr,*/c2 + garasa,as {cos (8, - 8,) - I }  - ara& = 0, (3 .6 )  

- 2gb,,, - a:.: = 0. (3 .7 )  

The kinematic condition leads to 

b, -a, = En 
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(where En denotes a set of third-order terms which arise when q5 and [ are sub- 
stituted in the kinematic equation) and 

(3.9) 

In the previous work (Hogben 1971 b) the kinematic condition was neglected 
and it was assumed that arsf = b,,*. As a result, though the potential function 
derived was in fact correct, the wave amplitudes were not. In addition only 
one of the numerous relevant third-order terms was included and the conclusions 
regarding phase distortion were thus incorrect. 

The algebra involved in the derivation of the complete set of third-order 
terms denoted by G,  and En in (3.5) and (3.8) above is too lengthy to include in 
this paper but the principles of the analysis will be briefly indicated and the 
final results quoted. Details may be found in Hogben (1972). 

In  concept the method is still based on the argument used by Rayleigh for 
the single wave train but care has now been taken to ensure that all the addi- 
tional third-order terms arising in the multidirectional case are included. Thus 
in defining q5 and c it is noted that the primary terms denoted by the single 
summations in (3. I )  and (3.2) should contain contributions from third-order 
terms of the type $,,, and c,,, involving sin (R, + R, - R,) and cos (R, + €2, - R,) 
and other relevant subscript pairings. It is now possible to compute both G, 
and En by solving the equations (3.5) and (3.8) derived from the pressure and 
kinematic conditions taking account of all the third-order terms. These arise, 
for example, from expansion of the exponential factors and products of first- and 
second-order terms leading to the appropriate subscript pairing mentioned 
above. In  this way the following results were obtained by Hogben (1972). 

g1c2 = a, cos en( 1 - H,)) (3.10) 

H n  = (knan)'+ X hns, (3.11) 

where knan = 2m,/h,, A, is the wavelength of the nth primary wave mode and 
h,, is a set of second-order terms which may be defined, using the abbreviations 
a+ = (ans*+asnf), b* = (b,,++b,,*) and a* = a, fa,, as follows: 

(a, ~f: a,) a,,*- $a,a,a: see 8, = (a? f a,) b,+ f $a,a,a,a,sec 0, cos (0,- 8,). 

N 

s=l 
s+n 

2ananh,,, = a,a?b+(sec 8, + see 8,) +a,.? b-(sec 8, - sec 8,) 

+ a, a+ a2, (see 0, - see On,+) + a, a- a2 (see 0, - see 8,,-) 

+ (a: a, an a; see' 8, + 2a: a: a, a, see 8, see 0,) cos (0, - 0,) 

- a8a,b+a+ see B,,,, cos (On,+ - 0,) - a,a, b-a- see ens- cos (ens- - Os) 

- a, a, a+ a, sec 0, {cos (ens+ - 8,) + I} 

-a,a,a-a-sec 0,{cos (On,-- 0,) - 11. (3.12) 

For completeness it may be of some interest to cite here also the expression 
far E, derived by Hogben (1972), which may be written as 

(3.13) 
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where 
2a,a,enS = a& see 0,(b+- b-) -asa+a: sec0,+-aSa-a2 see On,- 

-asasb,a+sec ~, ,+cos  (OnS+-0,) -asasb-a-sec 0,,-cos (0,,--0,) 
+ $-a: a, a: sec2 0, + a: a: a, a, see 0, see 0, cos (8, - 0,). (3.14) 

In carrying out this analysis it was found that the quantities ars* andb,,* 
are unchanged by the inclusion of third-order terms. From (3.6), (3.7) and (3.9) 
it may be found that 

ars+ = brs* + ar a s  01, {arsec0r+a,secBscos(8r-0s)} for r =k s, (3.15) 
2(ar  k 01s) 

an, = 0, 

and, by using the abbreviation 

that 
U,, = g/c2- ( a r  ~f: 01,) cos 

b nn = - 1 ( 2  2 c Is) (anan)’. (3.17) 

By pairing the coefficients, writing a;,* = (ars* -t. a,*) and his* = (b,*$b,+), 
it may be shown that the second-order solution, in which H,, = 0 so that 

see 0, = ch,lg, 

may be expressed in the alternative form 

N 

n=l  
@ = c 2 a, cos 0, exp [ - (a, see 0,) z ]  sin Rn 

N r - 1  

r = l  s= l  
+ c C C ais+ cos Or,+ exp { - [(a, + a,) sec Or,+] z} sin (R, + B,) 

N r-1 

r = l  s = 1  
+c  2 2 a~ , -~os8~~-exp{-  [(a,-a,)secOrs_]z}sin(R,-R,), (3.18) 

N N r  

n=l r = l  s= l  
5 + C0 = X a, cos R, + C C {his+ cos (R, + R,) + bjs- cos (R, - Rs)}, (3.19) 

where (3.20) 

c2 

9 
brs* = - [2(arkas) ~ 0 ~ 0 ~ ~ ~ a ~ ~ ~ + $ a ~ a ~ a , a , { c o s ( 0 ~ - 8 ~ ) ~  l}-$aras(a~+a3] 

for r +as, (3.21) 

(3.22) 

In the rudimentary case N = 1 it may be found from (3.10), (3.12) and (3.13) 
that this solution is in agreement with Rayleigh’s results. In  the case N = 2 a 
comparison may be made with the results of Longuet-Higgins (1962) for a 

b& = b,, = - ( ~ 7 2 9 )  (a,aJ2. 



522 N .  Hogben 

single pair of wave trains. When the condition for steadiness is imposed on the 
formulae of Longuet-Higgins so that the notation corresponds as follows : 

c1, u2 f ca1, ca2, Ik, f k2l = &12f ,  0 = 01 - 02, @I, @2 = R,, R2, 

where Longuet-Higgins' symbols are on the left-hand side, it may be shown 
using (3.18)-(3.22) that the results are in agreement. 

4. Application of nonlinear analysis to waves due to a travelling source 
The analysis developed in the preceding section can in principle be applied to  

any steady multidirectional pattern of discrete cosine wave modes. In  $ 2  it 
was seen that the waves due to a travelling source include a transient distur- 
bance near the source and since this does not contain discrete modes it cannot 
be correctly taken into account in applying this second-order analysis. I b  was 
also noted that the free wave pattern for a source in open water is not strictly 
composed of discrete modes but can be approximated on this basis. For many 
practical purposes, in fact, the open-water case can be analysed as if it were 
the case of a tank of large width, provided that the correspondingly large number 
of modes does not overload the computer and that no intrusion is made into 
regions where reflexions from the imaginary walls are not negligible. The re- 
mainder of this section will therefore be concerned with waves due to a source 
travelling in a channel of finite width but infinite depth, and will not take 
account of interactions due to the transient disturbance near the source. 

In § 2 ,  expressions were derived for the amplitudes and wavenumbers for all 
the modes in the linearized free wave pattern in a tank which become the pri- 
mary waves in the second-order analysis. In  theory the number of modes is 
infinite but in practice, provided that the speed is not too low or the tank width 
too large, the number need not be excessive. It must be appreciated however 
that when applying the interaction analysis the modes for + 0, and - 0, must 
be treated separately and not paired off as in the usual linear computations, 
since they interact with each other. This point may be more clearly understood 
by rewriting equation (2.1) for the free waves in a tank as 

and noting that each wave mode extends across the full width of the tank. 
I t  is also important to notice that the formulae defining the admissible 

wavenumbers must be modified to allow for the second-order effects on the 
wavenumbers of the primary waves while still satisfying the boundary condi- 
tions at the walls. Strictly speaking the corresponding secondary waves should 
also be subject to these boundary conditions and this could be ensured by 
including relevant contributions from the primary waves of neighbouring 
image sources. In practice this would incur excessive computation but the 
difficulty may be avoided by keeping clear of regions affected by reflexion so 
that these conditions can be neglected. In  this connexion it is important to 
appreciate that the discrete mode representation of the free waves is valid 
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throughout the wave field, including regions upstream of the reflexion point. In  
most experimental situations the author has in fact found that there is a sub- 
stantial working region containing discrete free waves in which both transient 
and reflexion effects may be neglected. Intuitively i t  must of course be expected 
that in this area there should be very little difference between the ‘discrete’ 
free waves and the corresponding ‘ continuous ’ open-water pattern. 

On the basis of the foregoing assumptions application of the analysis des- 
cribed in $ 3  to the case of a source in a deep tank of finite width leads to the 
following expressions for the second-order free wave elevation &:fb2: 

+N 

n=-N 
c f b 2  = c bn (anx)  (PnY) 

+N 

+ kN X {brs+ cos ( a , ~ )  cos (a+ tan BrS+y) + b,- cos (a-x) cos (a- tan OrS-g)), 
(4.1) 

r = - N  s=-iV 
r+s 

where 

a, = yn cos 8,, P, = 27rn/b = yn sin 0, 

and yn = g see2 0,/c2( 1 - H,), 

so that 

brsf ,  a*, Orsf and H, may be determined from the relevant formulae of $3, noting 
that an = b, - 0(cY2). 

Regarding the crest envelopes, equations (2.2) and (2.3) may be used but the 
values of 0, defined by equation (2.4) must be modified to 

2 
(1 + [1+ ( 1Bn2,k2b2) (1 - Hn)2n2]4 

8, = cos-1 (4.3) 

Because of the complicated dependence of H, on 0, defined by (3.11) and 
(3.12), equation (4.3) must be solved by iteration starting with the linear assump- 
tion €3, = 0. 

A computer program has been written for calculating the free wave profiles to 
second order and the nonlinear distortion of the primary wave crest envelopes, 
and some sample results are shown in figures 2 and 3 and table I. In  all the 
cases shown, N has been taken as 6 so that the total number of primary wave 
modes corresponding to - N < n < N is 13. 

The concern of this paper is mainly with the nonlinear phase distortion but 
some brief comments may be made on the profiles in figure 2. These have been 
drawn for a source at depth z, = 0.05b at a Froude number based on tank 
width F ,  = c/(gb)* = 0.5. The second-order profiles are shown for a very high 
value of the source strength parameter Q = 87rm/b2c = 0.08 so that the influence 
of the nonlinearity can be easily seen. For actual ship wave patterns, in the 
author’s experience, the equivalent Q value determined by comparing steep- 
nesses of the component wave modes is generally less than about 0.01, as is 
explained below. 
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The curves display some slight bumpiness because of the limited number of 
modes but are otherwise physically reasonable. As expected, the nonlinear 
effect is greatest near the source and takes the form of a sharpening of the first 
crest and flattening of the first trough. It may be noted that a profile of Q com- 
puted from linear theory is included in the figure for Y = 0 to show that the 
transient disturbance becomes negligible a t  a very short distance from the 
source. The corresponding profile for Y = 0-25 was also computed but was 
found to be negligible. 

FIGURE 2. Sample wave profiles drawn for F,, = 0.5 and 2 = 0.05 including 
second-order free waves for Q = 0.08. 
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FIGURE 3 (a) .  For legend see facing page. 
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The nonlinear phase distortion of the primary waves is illustrated in figure 3 
and table I .  A range of values of the parameters Z = z,/b, Fb and Q is covered 
and in each case the figure shows the crest envelopes for the first cycle of the 
pattern. The points on the envelopes mark the points of intersection of the 
crests of adjacent modes. The dotted curves are the crest envelopes for the 
linear pattern in open water. Table I gives corresponding numerical details of 
the nonlinear distortion of the primary wavelengths and directions and includes 
a column showing values of S, = 2b,/h,, which define the steepnesses of the 
component modes. 

The values of 2 and Fb chosen effectively cover the normal working range of 
the author’s experience. The corresponding values of Q were chosen to give an 
indication of the range over which significant distortions may be expected 
according to this theory. Approximate equivalence with actual ship-wave 
patterns may be established by comparing the values of S, in table 1 with 
corresponding values derived from wave pattern measurements. The largest 
X, which the author has so far recorded experimentally is 0.019 (taking modes 
for + 8, and - 8, separately as in the present paper) and this was in conditions 
approximating to Fb = 0.25 and Z = 0.025, for which results are shown for 
Q = 0.01 in table 1. The maximum theoretical value of 8, in this case is 0.035 
and it must thus be inferred that the equivalent Q for the experiment was much 
less than 0.01. Looking now at figure 3(a)  it may be seen that the theoretical 
phase distortion for Q = 0.01 is quite small, the maximum crest displacement 
being about 4% of the transverse wavelength. This is to be compared with phase 
shifts determined experimentally of the order of 10% of the transverse wave- 
length which may be found, for example, in Hogben (1971a). These results thus 
strongly suggest that the free wave interaction mechanism which has been des- 
cribed can only account for a relatively small part of the observed phase distortion. 

It is of course possible to question the validity of the comparison. It could be, 
for example, that the experimentally determined values of X,, based on far- 
field measurements, grossly underestimate the near-field wave steepness and 
the corresponding equivalent Q because of wave breaking. Another point which 
has a bearing on the validity of the comparison emerges from consideration of 
the speed dependence. The theoretical results in figure 3 show that the distortion 
diminishes with increases in speed and in table 1 it may be seen that this is to be 
expected because of the corresponding decrease of steepness due t o  the lengthen- 
ing of the waves. The experimental results of Hogben (1971a), however, show 
increasing phase shift with increase of speed. The explanation for this probably 
lies in the influence of the interference between the bow and stern systems of an 
actual ship-wave pattern not occurring in the Kelvin pattern due to a single 
source. At  the Froude numbers concerned, this interference was causing an 
increase in steepness and hence in the phase shift, owing to the increasing speed. 

In spite of these reservations about the validity of the comparison it would 
still appear that the free wave interaction effects which have been investigated 
in this paper only account for a small part of the experimentally determined 
phase shifts. The remainder is probably mainly due to interaction between the 
free waves and the transient disturbance near the source which was omitted 
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from the theory because of the analytical difficulty of including it. I n  the actual 
ship model situation, the disturbance near the bow contains quite large lateral 
and forward components of velocity including those associated with the outward 
displacement of the stream flow studied by Gadd, as was mentioned in the 
introduction. 

The author is indebted to his colleague Dr R. G. Standing for help in resolving 
anomalies in the original draft of this paper. 
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